

The University of Manchester

The Use of Experimental and Quasi-Experimental Methods in Innovation Policy Evaluation

Abdullah Gök

Manchester Institute of Innovation Research, University of Manchester, UK

14/11/2013, Vienna

FTEVAL Conference on Evaluation of STI policies, instruments and organisations: new horizons and new challenges



#### 2

- Evaluation Problem: Net Impact of a Policy = Observed Outcome Unobserved Counterfactual ( what would have happened without the policy)
- Evaluation Designs to overcome the evaluation problem
  - Experimental designs (i.e. randomisation or RCTs): randomly selecting a treatment and non-treatment group
  - Quasi-Experimental designs: actively balancing non-random treatment and non-treatment group or using only the treatment group before-after comparison
  - □ Non-experimental designs: not using a non-treatment group or before-after comparison
- Experimental designs as "gold standards" and hierarchies of evidence
- Experimental designs are rare but quasi-experimental designs are considerable (around 50%)
- Call for more use of experimental and quasi experimental methods in all policy areas

## **Research Questions:**

- How applicable are the experimental and quasi-experimental designs to innovation policy evaluation?
- Are the experimental and quasi experimental designs perceived as more useful and of higher quality by policy-makers?



## Data Sources:

- **Compendium of Evidence on the Effectiveness of Innovation Policy** 
  - Evaluation synthesis of 197 evaluation reports and 584 academic publications with evaluation evidence
- □ INNO-Appraisal Innovation Policy Evaluations Repository (IPER):
  - Meta evaluation of 171 EU28 innovation policy evaluations (2002-2007) in terms of their questions, methods, topics and audiences
  - Issues of quality and usefulness were assessed by respective policy-makers (N: 132)

## Structure:

- □ Innovation policy versus other policy areas
- □ Threats to validity and their relevance to innovation policy
  - Statistical Conclusion Validity
  - Internal Validity
  - Construct Validity
  - External Validity
- Quasi Experimental Designs versus
  - Other evaluation characteristics
  - Perceived quality
  - Perceived Usefulness
- Conclusion

#### MANCHESTER 1824 The University of Manchester

# Innovation Policy versus Other Policy Areas (Or What is Special about Innovation Policy?)

#### 4

### A list of issues that might arise in the evaluation of innovation policy

- *Paucity:* Number of units are comparatively very low
- Heterogeneity: Units are very heterogeneous (in terms of size, motivation, location, activities, processes etc.)
- **Fluidity:** Units are changing very rapidly and frequently
- **Long-tailed Effects:** Generally very few units have radical effects
- **Duration:** Intervention generally spans longer time-frames
- Lagged Effects: Effects generally occur with a lag
- **Non-Aggregatability:** There is not a clear aggregation between different levels of units especially due to evolutionary processes
- *Low Observability*: Making observation is more difficult and often through proxy indicators
- *Complex Policy:* Policy logic is more complex:
  - **D** Innovation policy aims to encourage units to do something differently
  - **ultimate** objective of innovation policy is difficult to measure
  - Often there are intermediate targets
  - Description of the second seco
- **Complex mix of effects:** There is a complex interplay of a variety of effects in influencing what innovation policy targets
- **Endogeneity**: Endogeneity is much more common especially due to the cause-effect loop
- **Strategic Behaviour:** Units respond strategically to the policy and evaluation and change their position rapidly after



#### 5

Shadish et al. 2002 framework

- Statistical Conclusion Validity: How valid is the statistical inference between the cause and effect?
  - □ Low Statistical Power (due to chronic paucity)
  - Violated Assumptions of Statistical Tests (due to heterogeneity, long-tailed effects)
  - Heterogeneity of Units
- Internal Validity: How valid is the inference of the relationship between the cause and effect?
  - □ Ambiguous Temporal Precedence (due to endogeneity, lagged effects, duration)
  - □ Selection (due to heterogeneity, complex policy)
  - □ History (due to complex mix of effects, fluidity)
  - □ Maturation (due to complex mix of effects, fluidity)
- **External Validity:** How valid is the generalisation of the inference to other circumstances?
  - □ Interaction of the Causal Relationship with Units (due to heterogeneity)
  - Interaction of the Causal Relationship Over Treatment Variations (due to complex policy, complex mix of effects, heterogeneity)
  - □ Interaction of the Causal Relationship with Outcomes (due to complex policy, complex mix of effects, heterogeneity)
  - Interactions of the Causal Relationship with Settings (due to complex mix of effects, fluidity, nonaggregatability)
- **Construct Validity:** How valid is the operationalisation of the evaluation in evaluating the relationship between the cause and effect?
  - □ Inadequate Explication of Constructs (*due to complex policy*)
  - Reactive Self-Report Changes (due to strategic hebaviour)

#### MANCHESTER 1824 Threats to Statistical Conclusion Validity

The University of Manchester

| 6                                                  |                                                                                                                                                                                                          |                                           |  |  |  |  |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|
| Threat                                             | Issue / Definition <sup>1</sup>                                                                                                                                                                          | <b>Relevance to Innovation Policy</b>     |  |  |  |  |
| Low Statistical Power                              | An insufficiently powered experiment may incorrectly conclude<br>that the relationship between treatment and outcome is not<br>significant.                                                              | +++<br>chronic paucity                    |  |  |  |  |
| Violated Assumptions of<br>Statistical Tests       | Violations of statistical test assumptions can lead to either<br>overestimating or underestimating the size and significance of an<br>effect.                                                            | +++<br>heterogeneity, long-tailed effects |  |  |  |  |
| Fishing and the Error Rate<br>Problem              | Repeated tests for significant relationships, if uncorrected for the number of tests, can artifactually inflate statistical significance.                                                                | +<br>low observability                    |  |  |  |  |
| Unreliability of Measures                          | Measurement error weakens the relationship between two<br>variables and strengthens or weakens the relationships among<br>three or more variables.                                                       | +<br>low observability                    |  |  |  |  |
| Restriction of Range                               | Reduced range on a variable usually weakens the relationship between it and another variable.                                                                                                            | +<br>low observability                    |  |  |  |  |
| Unreliability of Treatment<br>Implementation       | If a treatment that is intended to be implemented in a<br>standardized manner is implemented only partially for some<br>respondents, effects may be underestimated compared with full<br>implementation. | +<br>complex policy                       |  |  |  |  |
| Extraneous Variance in the<br>Experimental Setting | Some features of an experimental setting may inflate error, making detection of an effect more difficult.                                                                                                |                                           |  |  |  |  |
| Heterogeneity of Units                             | Increased variability on the outcome variable within conditions<br>increases error variance, making detection of a relationship more<br>difficult.                                                       | <b>+++</b><br>heterogeneity               |  |  |  |  |
| Inaccurate Effect Size<br>Estimation               | Some statistics systematically overestimate or underestimate the size of an effect.                                                                                                                      |                                           |  |  |  |  |

<sup>1</sup> Based on Shadish, W.R., Cook, T.D., Campbell, D.T., 2002. Experimental and quasi-experimental designs for generalized causal inference. Houghton Mifflin.



The University of Manchester

| 7                                                                      |                                                                                                                                                                                  |                                               |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Threat                                                                 | Issue / Definition <sup>1</sup>                                                                                                                                                  | <b>Relevance to Innovation Policy</b>         |
| Ambiguous Temporal<br>Precedence                                       | Lack of clarity about which variable occurred first may yield<br>confusion about which variable is the cause and which is the<br>effect.                                         | ++<br>Endogeneity, lagged effects, duration   |
| Selection                                                              | Systematic differences over conditions in respondent<br>characteristics that could also cause the observed effect.                                                               | +++<br>Heterogeneity, complex policy          |
| History                                                                | Events occurring concurrently with treatment could cause the observed effect.                                                                                                    | <b>++</b><br>Complex mix of effects, Fluidity |
| Maturation                                                             | Naturally occurring changes over time could be confused with a treatment effect.                                                                                                 | <b>++</b><br>Complex mix of effects, Fluidity |
| Regression                                                             | When units are selected for their extreme scores, they will often<br>have less extreme scores on other variables, an occurrence that<br>can be confused with a treatment effect. |                                               |
| Attrition                                                              | Loss of respondents to treatment or to measurement can produce<br>artifactual effects if that loss is systematically correlated with<br>conditions.                              | +<br>Fluidity                                 |
| Testing                                                                | Exposure to a test can affect scores on subsequent exposures to that test, an occurrence that can be confused with a treatment effect.                                           | +<br>Strategic Behaviour                      |
| Instrumentation                                                        | The nature of a measure may change over time or conditions in a way that could be confused with a treatment effect.                                                              | +<br>complex policy                           |
| Additive and Interactive<br>Effects of Threats to<br>Internal Validity | The impact of a threat can be added to that of another threat or<br>may depend on the level of another threat.                                                                   |                                               |

<sup>1</sup> Based on Shadish, W.R., Cook, T.D., Campbell, D.T., 2002. Experimental and quasi-experimental designs for generalized causal inference. Houghton Mifflin.

#### MANCHESTER 1824 Threats to External Validity

| 8                                                                      |                                                                                                                                                                                              |                                                                 |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Threat                                                                 | Issue / Definition <sup>1</sup>                                                                                                                                                              | <b>Relevance to Innovation Policy</b>                           |
| Interaction of the Causal<br>Relationship with Units                   | Certain kinds of units might not hold if other kinds of units had been studied.                                                                                                              | ++<br>Heterogeneity                                             |
| Interaction of the Causal<br>Relationship Over<br>Treatment Variations | One treatment variation might not hold with other variations of<br>that treatment, or when that treatment is combined with other<br>treatments, or when only part of that treatment is used. | +++<br>Complex policy, Complex mix of effects,<br>Heterogeneity |
| Interaction of the Causal<br>Relationship with<br>Outcomes             | One kind of outcome observation may not hold if other outcome observations were used.                                                                                                        | ++<br>Complex policy, Complex mix of effects,<br>Heterogeneity  |
| Interactions of the Causal<br>Relationship with Settings               | One kind of setting may not hold if other kinds of settings were to be used.                                                                                                                 | ++<br>Complex mix of effects, Fluidity, Non-<br>Aggregatability |
| Context-Dependent<br>Mediation                                         | An explanatory mediator of a causal relationship in one context<br>may not mediate in another context.                                                                                       | +<br>Complex policy                                             |



The University of Manchester

| 9                                                   |                                                                                                                                                                                                                      |                                |  |  |  |  |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|--|--|--|
| Threat                                              | Issue / Definition <sup>1</sup>                                                                                                                                                                                      | Relevance to Innovation Policy |  |  |  |  |
| Inadequate Explication of<br>Constructs             | Failure to adequately explicate a construct may lead to incorrect<br>inferences about the relationship between operation and<br>construct.                                                                           | ++<br>Complex policy           |  |  |  |  |
| Construct Confounding                               | Operations usually involve more than one construct, and failure<br>to describe all the constructs may result in incomplete construct<br>inferences.                                                                  |                                |  |  |  |  |
| Mono-Operation Bias                                 | Any one operationalization of a construct both underrepresents<br>the construct of interest and measures irrelevant constructs,<br>complicating inference.                                                           | +<br>low observability         |  |  |  |  |
| Mono-Method Bias                                    | When all operationalizations use the same method (e.g., self-report), this method is part of the construct actually studied.                                                                                         | +<br>low observability         |  |  |  |  |
| Confounding Constructs<br>with Levels of Constructs | Inferences about the constructs that best represent study<br>operations may fail to describe the limited levels of the construct<br>that were actually studied.                                                      |                                |  |  |  |  |
| Treatment Sensitive<br>Factorial Structure          | The structure of a measure may change as a result of treatment, change that may be hidden if the same scoring is always used.                                                                                        |                                |  |  |  |  |
| Reactive Self-Report<br>Changes                     | Self-reports can be affected by participant motivation to be in a treatment condition, motivation that can change after assignment is made.                                                                          | ++<br>strategic behaviour      |  |  |  |  |
| Reactivity to the<br>Experimental Situation         | Participant responses reflect not just treatments and measures<br>but also participants' perceptions of the experimental situation,<br>and those perceptions are part of the treatment construct actually<br>tested. | ++<br>strategic behaviour      |  |  |  |  |

<sup>1</sup> Based on Shadish, W.R., Cook, T.D., Campbell, D.T., 2002. Experimental and quasi-experimental designs for generalized causal inference. Houghton Mifflin.

#### MANCHESTER 1824 Threats to Construct Validity

| 10                                |                                                                                                                                                                                                                                                                            |                                |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Threat                            | Issue / Definition <sup>1</sup>                                                                                                                                                                                                                                            | Relevance to Innovation Policy |
| Experimenter Expectancies         | The experimenter can influence participant responses by<br>conveying expectations about desirable responses, and those<br>expectations are part of the treatment construct as actually tested.                                                                             |                                |
| Novelty and Disruption<br>Effects | Participants may respond unusually well to a novel innovation or<br>unusually poorly to one that disrupts their routine, a response that<br>must then be included as part of the treatment construct<br>description.                                                       |                                |
| Compensatory<br>Equalization      | When treatment provides desirable goods or services,<br>administrators, staff, or constituents may provide compensatory<br>goods or services to those not receiving treatment, and this action<br>must then be included as part of the treatment construct<br>description. |                                |
| Compensatory Rivalry              | Participants not receiving treatment may be motivated to show<br>they can do as well as those receiving treatment, and this<br>compensatory rivalry must then be included as part of the<br>treatment construct description.                                               |                                |
| <b>Resentful Demoralization</b>   | Participants not receiving a desirable treatment may be so<br>resentful or demoralized that they may respond more negatively<br>than otherwise, and this resentful demoralization must then be<br>included as part of the treatment construct description.                 | +<br>Complex policy            |
| Treatment Diffusion               | Participants may receive services from a condition to which they<br>were not assigned, making construct descriptions of both<br>conditions more difficult.                                                                                                                 |                                |

# Quasi Experimental Methods and Other Evaluation Characteristics

11

MANCHESTER

- Based on the analysis of INNO-Appraisal Database (N=171 evaluations), statistically significant associations (Chi-Square test):
- Control Group
  - More: Summative, concerned with input and output additionality (but not behavioural additionality), economic (rather than scientific, technological, social and environmental) impact, econometric methods, policy analyst audience
  - □ Less: qualitative methods (interviews, case studies, etc.)
- Before/After Comparison
  - More: Summative+Formative mixed, concerned with input and output additionality (but not behavioural additionality), gender and minority issues, economic (rather than scientific, technological, social and environmental) impact, econometric methods, policy analyst audience
  - Less: qualitative methods (interviews, case studies, etc.)

#### MANCHESTER 1824 Quasi Experimental Methods and Perceived Quality

The University of Manchester

#### 12

- Usefulness of recommendation defined in 5 point Likert Scale (1-Not at all to 5- Extensive)
- Overall N=132, verified by respective policy makers
- Independent Samples Means t-test, 2 tailed, variance equality also tested and adjusted

| Parceived Quality Dimension                                           | Status of | Control Group<br>Approach |              |                   | Before/After Group<br>Comparison Approach |      |                   |
|-----------------------------------------------------------------------|-----------|---------------------------|--------------|-------------------|-------------------------------------------|------|-------------------|
| rereerved Quanty Dimension                                            | Variable  | Ν                         | Mean         | Sig (2<br>tailed) | N                                         | Mean | Sig (2<br>tailed) |
| Was/Is the design of the evaluation appropriate given the             | No        | 89                        | 4.01         | .264              | 101                                       | 4.02 | .307              |
| objectives of the evaluation and the nature of the policy<br>measure? | Yes       | 21                        | 4.24         |                   | 10                                        | 4.30 |                   |
| Did/Do the methods chosen satisfy the Terms of                        | No        | 74                        | 4.22         | 100               | 84                                        | 4.25 | .238              |
| Reference/purpose of the appraisal?                                   | Yes       | 18                        | 4.56         | .132              | 8                                         | 4.63 |                   |
| Was/Is the application of the qualitative methods satisfactory?       | No        | 85                        | 3.95         | 801               | 95                                        | 3.89 | .161              |
| was/is the appreation of the quantative methods satisfactory.         | Yes       | 19                        | 3.89         | .001              | 9                                         | 4.33 |                   |
| Was/Is the application of the quantitative methods                    | No        | 78                        | <b>3.6</b> 7 | .001              | 89                                        | 3.80 | .553              |
| satisfactory?                                                         | Yes       | 20                        | 4.45         |                   | 9                                         | 4.00 |                   |
| Were/Are the information sources used in the report well              | No        | 89                        | 4.18         | .734              | 102                                       | 4.15 | .884              |
| documented and referenced?                                            | Yes       | 22                        | 4.09         |                   | 10                                        | 4.20 |                   |
| Was/Is the analysis clearly based on the data given?                  | No        | 89                        | 4.22         | .125              | 100                                       | 4.24 | .257              |
|                                                                       | Yes       | 22                        | 4.50         |                   | 12                                        | 4.50 |                   |
| Given the objectives of the appraisal, does the analysis cover        | No        | 89                        | 3.36         | .168              | 98                                        | 3.34 | .016              |
| economic contexts) sufficiently?                                      | Yes       | 20                        | 3.75         |                   | 12                                        | 4.17 |                   |
| Were/Are the conclusions based on the analysis?                       | No        | 90                        | 4.29         | .149              | 101                                       | 4.30 | .090              |
| were part e the conclusions based on the analysis.                    | Yes       | 22                        | 4.59         |                   | 12                                        | 4.75 |                   |

# Quasi Experimental Methods and Perceived Usefulness

13

MANCHESTER

- Usefulness of recommendation defined in 5 point Likert Scale (1-Not at all to 5- Extensive)
- Overall N=132, verified by respective policy makers
- Independent Samples Means t-test, 2 tailed, variance equality also tested and adjusted

| Donasivad Usafulnass Dimonsion            | Status of | Control Group<br>Approach |      |                   | Before/After Group<br>Comparison Approach |      |                   |  |
|-------------------------------------------|-----------|---------------------------|------|-------------------|-------------------------------------------|------|-------------------|--|
| referved Osefumess Dimension              | Variable  | Ν                         | Mean | Sig (2<br>tailed) | Ν                                         | Mean | Sig (2<br>tailed) |  |
| Changes to the design of the              | No        | 65                        | 3.02 | .810              | 63                                        | 3.05 | .424              |  |
| programme/measure appraised               | Yes       | 8                         | 3.13 |                   | 11                                        | 2.73 |                   |  |
| Changes to the management and             | No        | 68                        | 3.28 | <b>F7</b> 1       | 66                                        | 3.32 | 008               |  |
| programme/measure appraised               | Yes       | 7                         | 3.00 | •3/1              | 10                                        | 2.70 | .230              |  |
| Changes to the design, management and     | No        | 68                        | 3.56 | .591              | 69                                        | 3.65 | .103              |  |
| programmes/measures                       | Yes       | 9                         | 3.78 |                   | 9                                         | 2.78 |                   |  |
| Changes to the design, management and     | No        | 51                        | 2.18 | 0.57              | 55                                        | 2.35 | 045               |  |
| programmes/measures                       | Yes       | 9                         | 2.67 | .25/              | 6                                         | 1.33 | .045              |  |
| Changes to broader policy formulation and | No        | 62                        | 2.79 | 10.4              | 66                                        | 2.95 | 000               |  |
| implementation                            | Yes       | 11                        | 3.36 | .134              | 8                                         | 2.13 | .029              |  |



#### 14

- Experimental and (in some cases quasi-experimental designs) might generally be less applicable to innovation policy (relative to some other policy areas)
- Although there may be important opportunities where experimental designs can be employed, they are not necessarily the gold standards
- Experimental and Quasi Experimental methods are generally more associated with summative evaluations and economic impacts and econometric analysis
- Quasi-Experimental designs are not perceived as of more quality and useful by policy-makers
- Quality and especially usefulness depend on many other (political) factors
- Design Quality Usefulness relationship
  - □ Appropriate design increases quality to a certain level (but not higher)
  - Good quality increases usefulness to a certain level (but not higher)
- Policy experimentation versus experiments in evaluation

# Thank You!

Questions, Comments, Remarks: abdullah.gok@manchester.ac.uk

"Those are my principles, and if you don't like them... well, I have others!" Groucho Marx