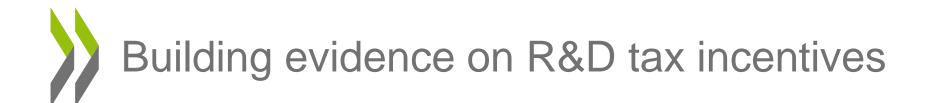
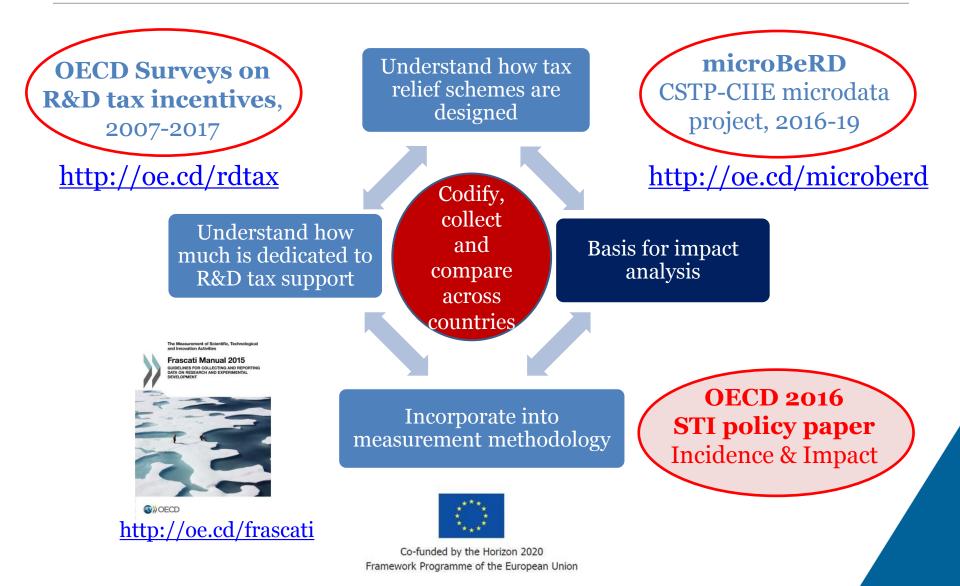

IMPACTS OF R&D TAX INCENTIVES – RESULTS FROM AN OECD SURVEY AND ANALYSIS

Fteval workshop on R&D tax incentives, Vienna, 14 Nov 2017

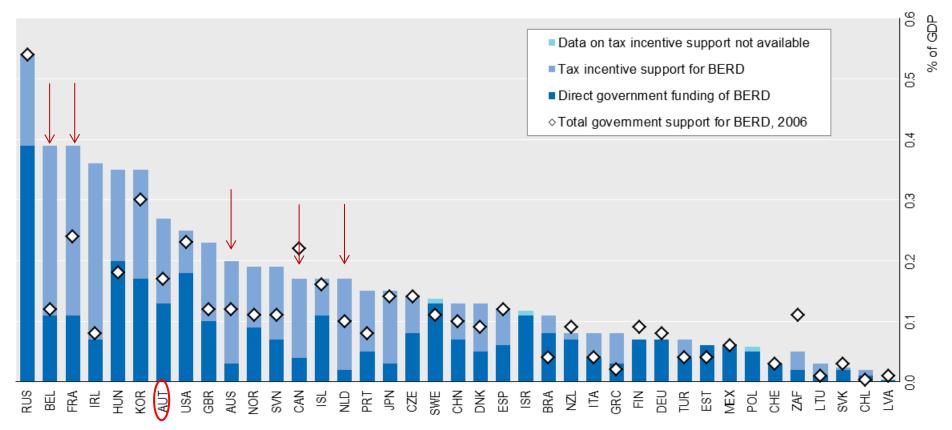
Silvia Appelt Economic Analysis and Statistics Division OECD Directorate for Science, Technology and Innovation


- 1. OECD evidence on the use of R&D tax incentives
- 2. Findings from the OECD literature survey on the impacts of R&D tax incentives
- 3. OECD contribution to analysing the impact of R&D tax incentives



- 70% of OECD R&D takes place in business sector
- Public support in form of:
 - Knowledge generated in publicly-funded research base, used by firms: universities, government labs, ...
 - Financial support for firms.
 - Rationales: appropriability (spillovers), finance constraints.
 - Tax incentives vs. direct funding
 - Market-based, non-discriminatory given pre-set rules
 - "Easier" to administer and to claim
 - "Easier" compliance with trade, competition, etc... rules

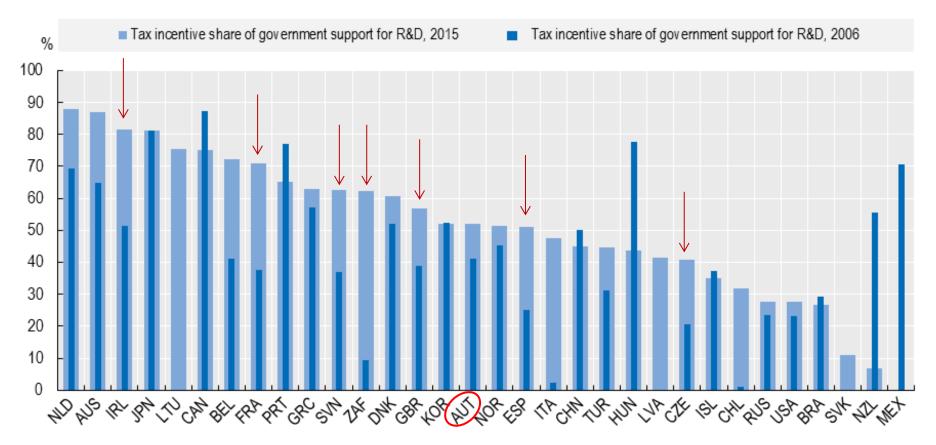
– R&D tax subsidies have become more widespread



INCIDENCE AND DESIGN OF R&D TAX INCENTIVES IN THE OECD AREA

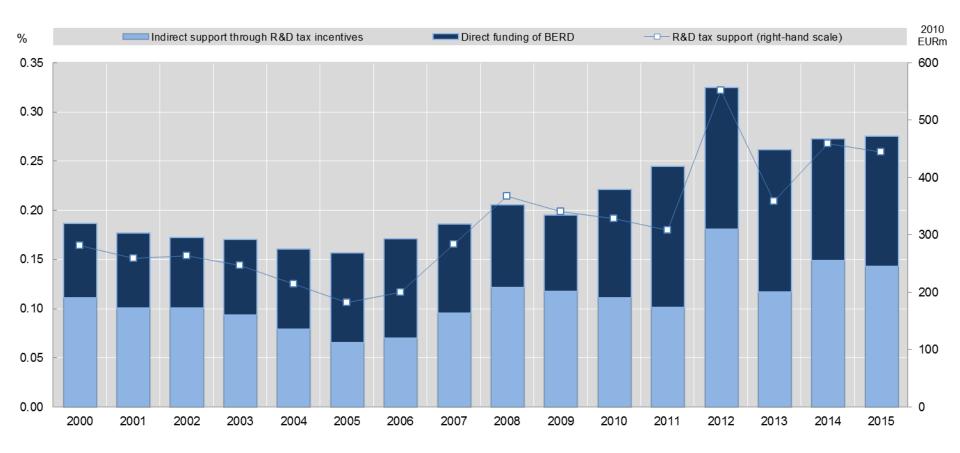
http://oe.cd/rdtax

How is public support split between direct funding (R&D procurement + grants) and tax support?


Direct funding of business R&D and R&D tax incentives, 2015 As a percentage of GDP

Source: OECD, R&D Tax Incentive Indicators, <u>http://oe.cd/rdtax</u>, July 2017.

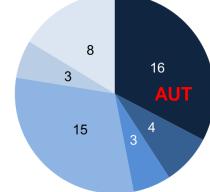
Trends in government support for business R&D through direct funding and tax incentives


Tax support as a percentage of total (direct and tax) government support for business R&D, 2000-15

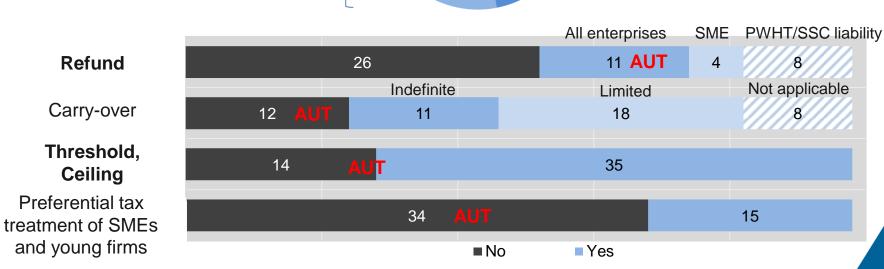
Source: OECD, R&D Tax Incentive Indicators, http://oe.cd/rdtax, July 2017.

Trends in direct and tax incentive support for business R&D, Austria

As a percentage of GDP and in 2010 EUR million, 2000-2015

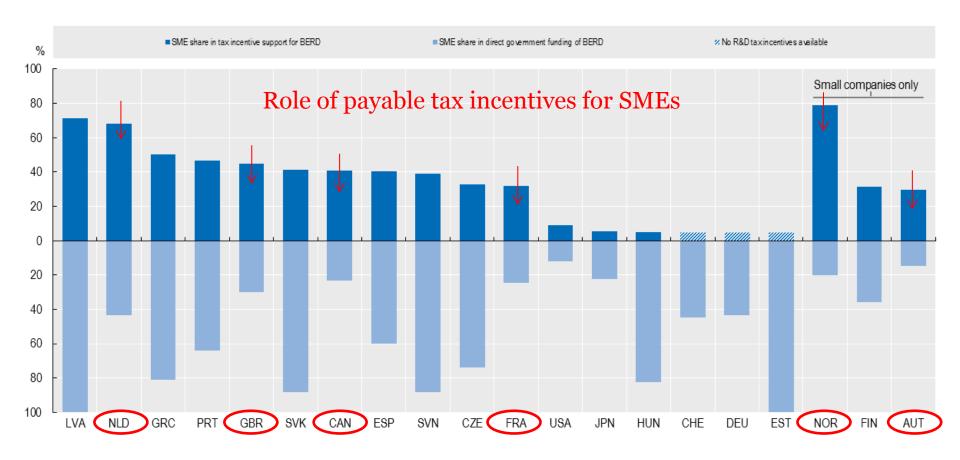

Source: OECD, R&D Tax Incentive Indicators, <u>http://oe.cd/rdtax</u>, July 2017. See OECD country profiles – <u>AUT 2016</u>

Key R&D tax incentive design features


Types of schemes used in OECD and partner economies, 2016 *Number of schemes*

CIT offset Tax credits

Volume-based

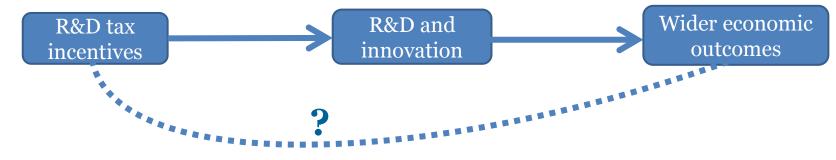

- Volume-based tax credit
 Incremental tax credit
 Hybrid tax credit
 Volume-based tax allowance
 Hybrid tax allowance
 - PWTC & SSC exemption

Source: OECD, R&D Tax Incentive Indicators, <u>http://oe.cd/rdtax</u>, July 2017.

Direct funding and tax incentive support for business R&D by SMEs, 2015

As a percentage of government support for BERD in each category

Source: OECD, R&D Tax Incentive Indicators, http://oe.cd/rdtax, July 2017.



OECD LITERATURE SURVEY OF THE IMPACTS OF R&D TAX INCENTIVES

OECD (2016), "<u>R&D Tax Incentives: Evidence on design</u>, <u>incidence and impacts</u>", OECD Science, Technology and Industry Policy Papers, No. 32, OECD Publishing, Paris.

http://oe.cd/rdtax

Expenditure-based tax incentives

- Impacts on
 - Input: R&D investment
 - **Output:** Innovation and wider economic outcomes
 - Other outcomes: **R&D location** and firm dynamics
- Heterogeneity in impacts firm size, policy design
- Tax vs. direct support

Income-based tax incentives

Input additionality

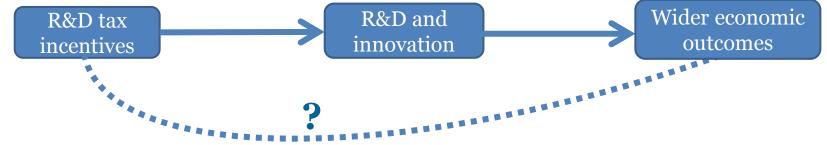
- Incrementality ratio, R&D price elasticity
- Robust evidence of positive effects
- Avg. long-run elasticity ~ 1 (Parsons and Phillips, 2007)
 - But variation across countries and firms!
 - Short-run elasticity smaller adjustment costs
- Also evidence of positive effects at extensive margin:
 - Corchuelo and Martinez-Ros, 2009; Haegeland and Moen, 2007), Margolis and Miotti (2015)

Output additionality

• Patents, introduction of new products and processes...

Output vs. input additionality

- Re-labeling of existing activities
 - Not supported by evidence (Mansfield, 1986; Hall, 1995)
- Input price increase (limited supply of researchers)
 - Some evidence: Goolsbee (1998); Haegeland and Møen (2007);
 Lokshin and Mohnen (2012); and Lokshin and Mohnen (2013)
 - But could capture quality Moretti and Wilson (2014)
- Additional projects may have lower productivity


Estimation challenges

- Imperfect measures patents...
- Time lag, spillovers

Evidence of positive impacts

- Czarnitzki (2011); Foreman-Peck (2013); Moretti and Wilson (2014); Bösenberg and Egger (2017)
- Dechezleprêtre et al. (2016)
 - Change in SME definition to estimate effect of UK tax credit
 - Positive effect on expenditure, own patenting and spillovers

Effect on productivity and employment growth

Evidence on direct link scarce

- Correlation between R&D tax incentives and productivity (Brouwer et al. 2005; Lokshin and Mohnen, 2007)
- Effect on employment and wages depends on industry (Moretti and Wilson, 2014)
- **Cost-benefit analyses** tend to find positive results ↔ assumptions
 - Berger (1993); Russo (2004); Parsons and Phillips (2007); Lokshin and Mohnen (2012); Foreman-Peck (2013); and Dechezleprêtre et al. (2016)

Other outcomes: R&D location

Relatively unexplored issue

- Increase in total R&D vs. relocation
- Evidence suggests that cross-border effects are important
 - Most of increase in US state-level R&D due to tax incentives offset by decrease in nearby states (Wilson, 2009)
 - R&D in one country responds to a change in price in another (Bloom and Griffith, 2001; Montmartin and Herrera, 2015)
- Taxation can play a role
 - CIT (Bloom et al 2002 ; Griffith et al., 2011)
 - Tax incentives (Belberdos et al, 2016)
- But other factors seem to be more important
 - OECD (2011), Belberdos et al (2016)

Heterogeneity in impacts - firm size

Small vs. large firms

- Stronger effect found for small firms (Baghana and Mohnen, 2009; Agrawal et al., 2014; Azcona et al., 2014; Romero-Jordán et al., 2014; Castellacci et Lie, 2015; Rao, 2015).
 - Financially constrained firms (Kasahara et al., 2014; Kobayashi, 2014)

Heterogeneity in impacts - design

Incremental vs. volume-based

- incremental incentives have higher incrementality ratio (Parsons and Phillips, 2007; Lokshin and Mohnen, 2012)
- May distort timing of R&D (Hollander et al., 1987; Lemaire, 1996)
- Requires favourable market conditions for additional R&D (Köhler et al., 2012); accelerated R&D spending, only accessible up to a certain extent (Mohnen, 2013)

• Temporary vs. permanent

- Limited take-up of a short term scheme (Kuusi et al., 2016)
- Predictability important (Rao, 2015a; Guellec and Van Pottelsberghe De La Potterie, 2003

Limited evidence...

- Relative effectiveness
 - Larger additionality for tax credits but support different types of projects (Haegeland and Moen, 2007)
 - Grants more suitable for young, financially constrained firms (Busom et al, 2014)
- Interaction effect
 - Substitutes Dumont (2015), Montmartin and Herrera (2015)
 - Complements Bérubé and Mohnen (2009), Haegeland and Moen (2007), Falk (2009)

microBeRD

DISTRIBUTED MICRODATA PROJECT ON THE INCIDENCE AND IMPACT OF PUBLIC SUPPORT FOR BERD

http://oe.cd/microberd

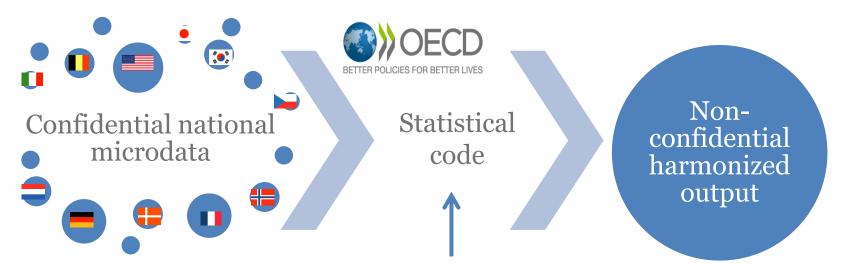
HORIZON 2020

The EU Framework Programme for Research and Innovation

Microdata studies

- firm-level detail
- but only 1 country

Cross-country studies


- cross-country variation
- but aggregate

Microdata-based cross-country analysis of business R&D

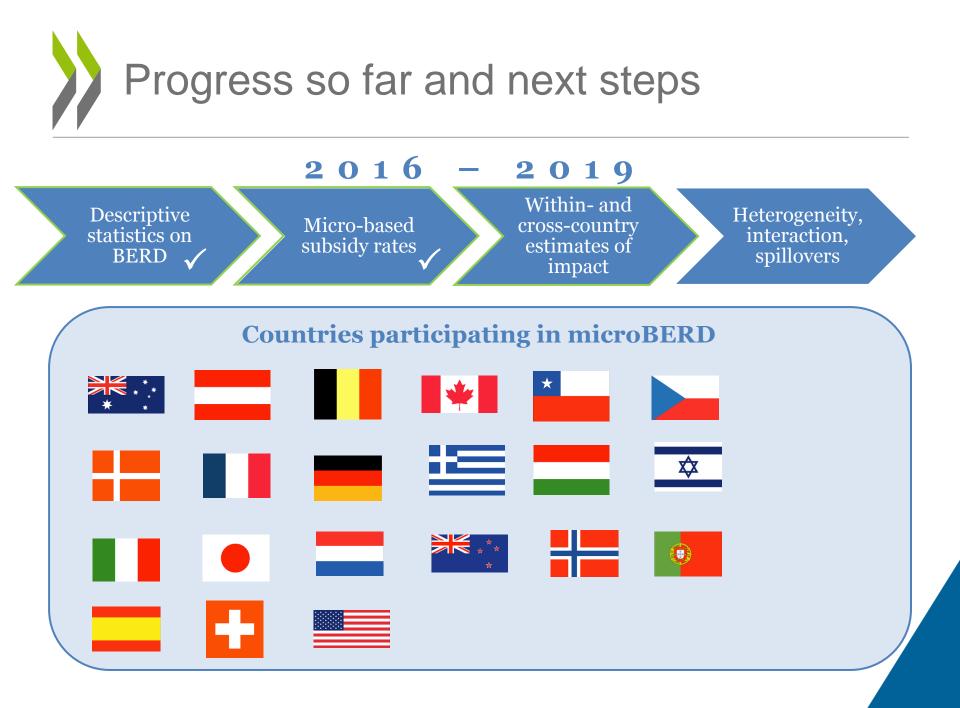
Inspired by: Innovation in firms, Dynemp and Multiprod

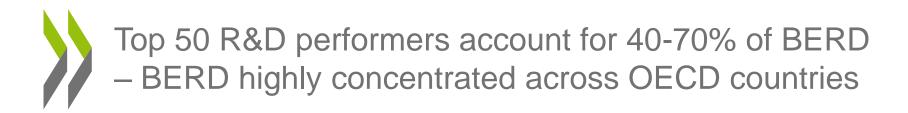
R&D survey + Corporate tax data

- + R&D grant/loan data
- + Business register data
- + Patent data
- + Innovation data

R&D tax incentive design information

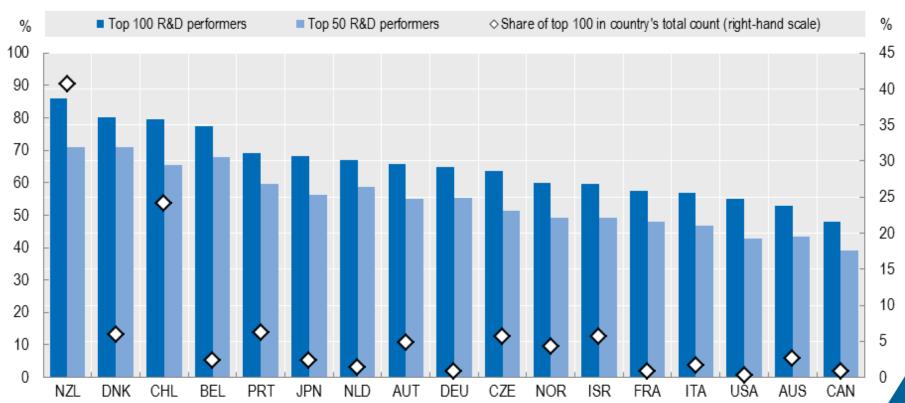
1. Cross-country descriptive evidence


- structure & concentration
- characteristics of beneficiaries


2. Evidence on causal effects

- comparing effectiveness (cross-country, design)
- Effect on different types of firms
- Interaction
- Spillovers

3. Supporting analytical capacity



Top 50-100 R&D performers, 2014 or closest

As a percentage of domestic business R&D expenditure and of total count of performers

Source: OECD, based on preliminary results from the OECD microBeRD project, <u>http://oe.cd/microberd</u>, July 2017.

- 1. OECD evidence on the use of R&D tax incentives
- 2. Findings from the OECD literature survey on the impacts of R&D tax incentives
- 3. OECD contribution to analysing the impact of R&D tax incentives

Key messages - OECD survey and previous work

- □ Role of heterogeneity of R&D performers
- □ Balancing tax incentives and direct support
- □ Policy predictability, regulatory environment
- □ Income-based incentives: caution needed
- □ Key role of ex-post and ex-ante evaluation

Thank YOU silvia.appelt@oecd.org matej.bajgar@oecd.org chiara.criscuolo@oecd.org fernando-galindo-rueda@oecd.org

OECD R&D Tax Incentives: <u>http://oe.cd/rdtax</u> OECD microBeRD project: <u>http://oe.cd/microBeRD</u>