

Nicht-experimentelle Methoden zur Kausalanalyse: Am Beispiel der Evaluierung öffentlicher Gründungsförderung

Hanna Hottenrott – Technische Universität München

FT Eval Veranstaltung: "Was können ökonometrische Methoden, was können sie nicht?,, Österreichisches Institut für Wirtschaftsforschung

3. September 2021

Start-up subsidies?

Bank aus Verantwortung

The main research question

Do subsidies help startups to perform better?

Example: Employment growth

The evaluation question

How would a start-up have performed in absence of the subsidy?

Answer: We will never know.

- Econometric methods for causal interference in non-experimental settings
- Example implementations based on two recent articles

ELSEVIER	Research Policy Volume 49, Issue 1, February 2020, 102000
Start-u matter:	p subsidies: Does the policy instrument
Hanna Hottenrot	^{, , , b} 오 평, Robert Richstein 대
ELSEVIER	Journal of Business Venturing Insights Volume 16, November 2021, e00272
Start-up st capital	ubsidies and the sources of venture
^A arius Berger ^{a, b} , Hann	a Hottenrott ^{a, b, c} A 四

We cannot observe how a start-up would performed in absence of the subsidy But:

We can try to estimate the counter factual situation

to get an **approximation of the treatment effect** based on difference between the treated firms' outcomes and the counterfactuals

Which method to pick?

- Depends on research setting & available data
 - Do we know successful and unsuccessful applicants?
 - Do we know details about the selection process, e.g. evaluation scores of proposals?
 - Do we observe firms before and after the receipt?
- In our case
 - No information about application process or selection
 - No information about rejected applicants
 - In many cases, we do not observe the firms before the subsidy

- → Regression discontinuity designs (RDD) or Difference-in-Differences (DiD) not implementable
- → Matching techniques to find suitable counter factuals

Popularity of Propensity Score Matching (all fields)

3000

2500

2000

1500

1000

500

0

202,

2010

Gerfin & Lechner (2002) A microeconometric evaluation of theactive labour market policy in Switzerland, *The Economic Journal* 112(482), 854–893

Smith &Todd (2005) Does matching overcome LaLonde's critique of nonexperimental estimators? *Journal of Econometrics* 125, 305–353

Dehejiaa (2005) Practical propensity score matching: a reply to Smith and Todd, *Journal of Econometrics* 125 (2005) 355–364

Imbens & Wooldridge (2009) Recent developments in the econometrics of program evaluation, *Journal of Economic Literature* 47, 5–86

Research method: Propensity Score Matching

- ✓ Minimum data requirements:
 - Comprehensive data with ideally some time-series properties
 - Recipients and non-recipients
 - Founder (team) and firm characteristics

- ✓ Here:
 - Founding cohorts 2005-2012 (IAB/ZEW Start-up Panel)
 - Information on receipt of subsidy
 - Information on relevant performance outcomes: employees, turnover, R&D spending, investment, innovation success
 - Information on relevant founder and firm characteristics (Lechner, M., Wunsch, C., 2013. Sensitivity of matching-based program evaluations to the availability of control variables. Labour Econ. 21, 111–121)

Pick for each treated the most similar un-treated firm

Treatment group S = 1

Founders: Dr. Andreas Sichert, Dr.-Ing. Andreas Schuster, Richard Aumann Year: 2008 Activity: waste heat recovery

Founders: Dr. Andre Lodwig, Dr. Hans Oswald **Year:** 2007 **Activity:** audiological diagnostics

Control group S = 0

Founders: Daniel Quinger, Dr. Michael Geppert, Tobias Mayer Year: 2008 Activity: energy storage applications

Founders: Dr. Joachim Wiest, Prof. Dr. Bernhard Wolf, Dr. Helmut Herz, Herbert Zuleger **Year:** 2007 **Activity:** system solutions for microphysiometry

Propensity Score Matching

Collect attributes that predict treatment

Founder(s)' academic background, age, industry experience, entrepreneurial experience, professional experience, team (composition, e.g. gender, academic background), enture age, revenue, profit, ex-ante financing structure, patents, market penetration (e.g. export), R&D activity, capacity utilization, location characteristics

Estimate propensity to receive treatment

 $\Pr(S = 1 \mid X) = G(\beta X)$

- Calculate the Mahalanobis distance between a treated and a control observation (Gerfin & Lechner 2002)
- For each treated firm pick closest neighbor(s) (Rosenbaum and Rubin, 1983)

Propensity Score Matching

- Employ a caliper to avoid "bad matches" by imposing a threshold of the maximum distance allowed
 - Why? Closest neighbor could still be relatively far away, i.e. not similar enough
- **Combine with exact matching** (founding cohort, sector, region)
 - Why? Some comparisons may simply not be reasonable
 - **PSM** reduces complexity by matching on a single score, but this has drawbacks compared to (Coarsened) **Exact Matching**
- Conditional independence assumption (Rubin 1977):

$$E(Y|S = 1, X) = E(Y|S = 0, X)$$

• Estimate the average treatment effect as:

$$\alpha^{TT} = E(Y^T | S = 1, X = x) - E(Y^C | S = 0, X = x)$$

The data

	Potential C Grou	Control p	Treat	ment G	roup		Potential C Grou	ontrol	Treat	ment Gr	oup
	N= 4.0	57		N= 822			N= 4,0	57		N= 822	
Variables	Mean	SD	Mean	SD	t-test*	Variables	Mean	SD	Mean	SD	t-test*
Founder characteristics						Firm characteristics					
University	0.332	0.471	0.341	0.474	0.623	Team	0.374	0.484	0.384	0.487	0.589
Vocational training	0 1 9 0	0 302	0 178	0 382	0.415	Start-up age _{t-1}	2.796	1.655	2.331	1.524	0.000
vocational training	0.190	0.392	0.170	0.302	0.415	Limited liability	0.520	0.500	0.557	0.497	0.051
Master craftsman	0.221	0.415	0.210	0.408	0.502	In(Tangible assets)	5.814	4.468	5.733	4.551	0.634
Founder age	44.746	10.079	44.797	9.211	0.893	Patent stock	0.183	3.672	0.130	1.586	0.688
Industry experience	17.239	9.660	16.591	9.021	0.076	Export activity _{t-1}	0.151	0.358	0.212	0.409	0.000
5 1						Capacity utilization _{t-1}	84.988	29.852	88.104	28.668	0.006
Entrepreneurial experience	0.458	0.498	0.416	0.493	0.029	East Germany location	0.131	0.338	0.210	0.408	0.000
Bankruptcy experience	0.072	0.258	0.071	0.256	0.886	In(R&D-Expenditure) _{t-1}	1.832	3.946	2.714	4.676	0.000
Opportunity driven	0 779	0 415	0 755	0 430	0 138	In(Employees) _{t-1}	0.865	0.753	0.833	0.934	0.284
	0.170	0.110	0.700	0.100	0.100	In(Revenue) _{t-1}	7.695	5.620	6.451	5.973	0.000
Female	0.128	0.334	0.108	0.311	0.120	In(Tangible Investment) _{t-1}	5.471	4.817	5.017	5.052	0.015

Profit_{t-1}

17.724 105.303

6.123 94.865 **0.003**

Outcomes before matching

	Potential Cont	Treatment Group			
Variables	Mean	SD	Mean	SD	t-test*
(R&D-Exp/ Employees) _{t+1}	402	1,029	494	1,173	0.023
(R&D-Emp/ Employees) _{t+1}	11.200	26.318	15.003	28.326	0.000
In(R&D-Expenditure) _{t+1}	3.208	4.835	4.178	5.277	0.000
In(R&D-Employees) _{t+1}	0.220	0.482	0.347	0.596	0.000
In(Employees) _{t+1}	1.340	0.637	1.504	0.746	0.000
In(Revenue) _{t+1}	11.035	3.559	11.260	3.534	0.098
In(Tangible Investment) _{t+1}	6.254	4.606	7.001	4.441	0.000

Plausible timing?

Propensity Score Estimation

Several of the predictors explain subsidy receipt

→ Significant differences between treated and untreated firms that could also explain differences in performance

Matching outcome

Propensity score & all covariates should be balanced after matching!

Propensity Score Estimation (after matching)

ПΠ

Outcomes after matching

	Selected Gro	l Control oup	т	reatment G	Group	
	N=	732		N= 732		
Outcome variables	Mean	SD	Mean	SD	t-test of r differ	mean ence
(R&D-Exp/ Employees) _{t+1}	465.111	1,070.221	464.538	1,118.555	C).992
(R&D-Emp/ Employees) _{t+}	1 11.738	26.208	14.028	27.890	C	0.106
In(R&D-Expenditure) _{t+1}	3.624	4.979	3.800	5.124	C).506
In(R&D-Employees) _{t+1}	0.236	0.511	0.299	0.543	().024
In(Employees) _{t+1}	1.349	0.640	1.428	0.700	C).026
In(Revenue) _{t+1}	10.791	4.019	11.132	3.546	C	0.085
In(Tangible Investment) t+-	5.995	4.672	6.916	4.403	C	0.000

Before matching:

In(Employees) _{t+1}	1.340	0.637	1.504	0.746	0.000

Strengths and pitfalls I

• Differences between groups in post treatment outcome variables can be causally attributed to the subsidy

if we assume that we observe all relevant differences between treated and untreated firms

• Propensity score matching \rightarrow simple method to reduce selection bias

Key advantages:

- Modest data requirements
- Quasi-randomization
- Simplifies matching on many characteristics → single score

Points to remember when using matching methods

- Critically reflect the results
 - Not only propensity score should be balanced after matching, but also all predictors
 - If not the case: combine with caliper and/or exact matching
- What *unobservable* factors may be important (but are not proxied for)?

Addressing "matching on observables problem"

- ТΠ
- **Combine PSM with fixed effects models** (Arkhangeslky & Imbens 2018, The role of the propensity score in fixed effect models, NBER Working Paper #24814)

	Panel A: POLS (unmatched)							
	VC	GVC	BA	IVC	CVC			
Subsidy(t)	0.0034***	0.0028***	0.0016***	0.0011***	0.0007**			
	(0.0006)	(0.0005)	(0.0004)	(0.0004)	(0.0003)			
Obs.	55051	55330	55659	55589	55837			
	Panel B: POL	S (matched)						
	VC	GVC	BA	IVC	CVC			
Subsidy(t)	0.0026***	0.0021***	0.0015***	0.0003	0.0007*			
	(0.0008)	(0.0007)	(0.0005)	(0.0006)	(0.0004)			
Obs.	24978	25104	25285	25212	25323			
	Panel C: With	iin (matched)						
	VC	GVC	BA	IVC	CVC			
Subsidy(t)	0.0058**	0.0044**	0.0031*	0.0013	0.0011			
	(0.0025)	(0.0021)	(0.0018)	(0.0017)	(0.0010)			
Groups	3953	3955	3963	3961	3961			
Obs	24978	25104	25285	25212	25323			

Question here: Are start-up subsidies causally linked to follow-on financing?

Captures influence of time-constant unobservables

Strengths and pitfalls II

ТЛ

- What other *external* factors could affect the result? Are there other "treatments" happening?
- How plausible is the timing?
- How sensitive is the size of treatment effect to the given sample?
 - How plausible is the effect size? How meaningful is the average treatment effect?
 - What about treated firms that were not "matched"?
 - Discrete versus continuous treatment
- How sensitive are the results to using different matching approaches:
 - E.g. Coarsened Exact Matching or Kernel matching (see e.g. Todd P.E. (2010) Matching Estimators. In: Durlauf S.N., Blume L.E. (eds) Microeconometrics. The New Palgrave Economics Collection)
- Methods for continuous treatments → generalized propensity scores (see e.g. Imbens 2000, The role of the propensity score in estimating dose-response functions, Biometrika, 87(3), 706–710)

Thank you!

Contact details

Professor Dr. Hanna Hottenrott Professorship Economics of Innovation

Technical University of Munich TUM School of Management

Arcisstrasse 21 80333 Munich

hanna.hottenrott@tum.de www.professors.wi.tum.de/eoi